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ABSTRACT 

The purpose of this paper is to compare location data from a dedicated 
Global Positioning Systems (GPS) device with location data from 
smartphones. Data from the INTerventions, Equity, and Action in Cities 
Team (INTERACT), a Canada-wide study examining the impacts of urban 
form changes on health in Victoria, Vancouver, Saskatoon, and Montreal, 
were used. A total of 337 participants contributed data from the Ethica Data 
smartphone app and the SenseDoc dedicated GPS. Participants recorded 
an average total of 14,781 Ethica locations (SD=19,353) and 197,167 
SenseDoc locations (SD=111,868). Dynamic time warping was used to 
examine spatial and temporal similarity of GPS point time sequences. Three 
activity space measures, a convex hull, a 2-standard deviation ellipse, and 
500meter radius circular buffers around points, derived the smartphone 
and dedicated GPS device were compared. The analysis shows that if the 
outcome data are available at the day or survey level, there may only be 
small differences in observed associations between exposure and outcome 
whether using dedicated GPS or smartphone location data. However, if the 
exposure and outcome data are summarized and analyzed at the hour or 
minute frequency, dedicated GPS and smartphone devices are likely to 
provide different substantially different estimates of exposure.   

 

1. Introduction 

The advent of cheap, portable location sensing devices, typically based on Global Positioning 
System, has revolutionized the study of human mobility (Zhao et al., 2016). The ability to 
continuously locate an individual has made detailed trajectory analysis possible, improving our 
capacity to explore how our daily mobility relates to health. The advent of smartphones with 
embedded GPS capabilities, and later combined GPS-Wifi-Cellular localization provides an even 
greater potential to collect mobility data in large populations (Zhao et al., 2016). 
 
Mobility and health research that uses GPS location has mainly relied on dedicated GPS receivers 
(Duncan et al., 2009). Dedicated location loggers have a longer battery life than smartphones and 
typically provide one-second epoch GPS data (Stopher et al., 2018a). Various factors can affect 
GPS signal accuracy (Düking et al., 2018; Lee et al., 2020; Ueberham & Schlink, 2018), including 
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device type, chipset, and environmental conditions. Researchers are increasingly using 
smartphones to collect location data to study behavior in everyday life (Harari et al., 2017), but 
their use presents a series of drawbacks including battery life (Hashemian et al., 2012) and 
participant compliance (Keusch et al., 2022). While research using GPS data has surged, few 
studies have compared location data obtained from dedicated GPS and smartphone devices, worn 
by human participants, over longer periods (Adamakis, 2017; Stopher et al., 2018b).  
In this paper we compare location data from a dedicated GPS device with location data from 
smartphones. We further examine similarities between these location measures for common 
indicators of environmental exposure.  
 

2. Methods & Data 

The INTerventions, Equity, Research, and Action in Cities Team (INTERACT) is a Canada-wide 
study examining the impacts of urban changes on health and equity. Since 2017, it has been 
following a cohort of participants in four Canadian cities with data collection every 2 years. The 
study protocol (Kestens et al., 2019) and baseline results (Fuller et al., 2021) have been published. 
Ethical approval from the ethics boards of Simon Fraser University (2017s0158, 2017s0531, and 
2018s0127), the University of Saskatchewan (17-347), and the Centre de Recherche du Centre 
Hospitalier de l’Université de Montréal (CÉR CHUM 16.397) was obtained.  
 
Participants completed an online survey about their health and well-being, and demographic 
information. They had the choice to run the Ethica App (Ethica Data, 2020), a smartphone 
application that collects location and accelerometry data, on their personal phone for 30 days. To 
save battery and reduce the impact on participants, data acquisition occurred for 1 minute every 
5 minutes. Some participants who opted into Ethica data collection were also invited to wear a 
SenseDoc (The SenseDoc, 2020), a dedicated device that records GPS and accelerometry data for 
10 days. To compare data from the dedicated GPS device and data collected using the smartphone 
App, we took a two-step approach by (i) measuring the location data similarity and (ii) measuring 
the characteristics of various activity space measures regularly encountered in the health 
geography literature (namely convex hulls, deviational ellipses, and buffers).  
 

2.1 Track Similarity  

Tracks were compared within subjects and aligned in time. Ethica tracks were filtered to remove 
all fixes with an accuracy above 100m, as computed by the smartphone locational subsystem, and 
duplicated timestamps were resolved by keeping the most accurate fix. SenseDoc tracks did not 
undergo any specific filtering. Finally, all GPS tracks were clipped to the corresponding Census 
Metropolitan Area (CMA – a Canadian Census spatial unit delineating large, densely populated 
centers made up of adjacent municipalities that are economically and socially integrated(Statistics 
Canada, n.d.)). Once cleaned, GPS track similarity of the two data sources was assessed using two 
metrics: spatial cross-correlation and dynamic time warping.  
 
Spatial cross-correlation is commonly used in image processing to evaluate how much one image 
resembles another.(Gonzalez et al., 2009) We rasterized the projected GPS locations by binning 
them into 2D histograms, with varying temporal and spatial scales to evaluate point density 
patterns similarity. We used temporal epochs ranging from the whole survey (i.e., the longest 
common period of data from both sensors), day, 6 hours, 1 hour, 15 minutes and down to 5 
minutes (which is the smallest temporal resolution for Ethica data) and spatial resolutions of 1km, 
500m, 250m, 125m, 50m, 25m and 10m. We computed the pair-wise cross-correlation coefficient 
of corresponding histograms using function signal.correlate2d from the Scipy Python 
module. 
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2.2 Activity Space Similarity 

To assess aggregate measures of exposure using location data, we computed a number of different 
activity space measures common in the health geography literature (Smith et al., 2019). For each 
participant and each data source, we built: 

1. a convex hull (the smallest convex polygon encompassing all the GPS points);  

2. a 2-standard deviation ellipse (defined by the x and y-axis distributions centered on the 

mean location of all GPS points);  

3. a 500m radius circular buffer around points;  

4. a 500m radius buffer along linear-shaped tracks.  

We compared the resulting polygons in terms of areal overlap, measured as a percentage (Shareck 
et al., 2013). The Ethica and SenseDoc comparison metrics inform us about which of the Ethica 
or SenseDoc activity space includes, possibly only partly, the other.  
 

3. Results 

Among the INTERACT participants who contributed locational data using both Ethica App and 
SenseDocs, 337 of them had at least partially overlapping data collection periods. This cohort 
subsample comprises a majority of women (61.1%), with participants in the mid-forties (mean 
age=43.6 years, SD=14.8), highly educated (78.1% have a university degree) and predominantly 
white (87.5%). The average duration of the common period of data collection totals 8 days, 21 
hours and 17 minutes, which is somewhat shorter than the target length of the SenseDoc data 
collection (10 days). 
 

3.1 Track Similarity – Spatial Cross-Correlation 

Spatial cross-correlation (CC) of GPS point density for SenseDoc and Ethica tracks is shown in 
Figure 1, with subpanels corresponding to aggregation epoch (ranging from 5 minutes to the 
entire survey period) and the x-axis corresponding to grid cell size (ranging from 10m to 1000m). 
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Figure 1. Cross-correlation analysis comparing 2D histograms of each track at various temporal and spatial scales, 
ranging from 5-minute epoch to the whole survey for the time dimension and from 10m to 1km for the spatial 

dimension. 

 
Figure 1 shows that Ethica and SenseDoc capture the same kind of information at coarser scales. 
For the survey and 24 hour aggregation period using a cell size of 125m or greater, cross 
correlations between the SenseDoc and Ethica app are above 0.75. Cross correlation median 
values at 125m resolution for survey and day levels are respectively 0.92 and 0.81 and improve as 
cell size increases. Cross correlation begins to degrade below 125m or on timescales shorter than 
a day. At the 1 hour, 15 minute, and 5 minute aggregation the cross-correlation between the 
SenseDoc and Ethica is effectively zero. 
 

3.1 Activity Space Similarity – Bland-Altman Plots 

The Bland-Altman plots (Figure 2) show absolute differences in km2 between the SenseDoc and 
Ethica activity space metrics. Overall, the SenseDoc based activity spaces are larger than Ethica 
derived spaces. Across all cities the overall agreement between the activity space measures was 
80% for the convex hull, 54% for the 2SD ellipse, 61% for the 500m buffer around fixes, and 75% 
for the 500 buffer around tracks. The absolute differences between the SenseDoc and Ethica app 
was -43.7km for the convex hull, -21.7km for the 2SD ellipse, -22.3km for the 500m buffer 
around fixes, and -12.8km for the 500 buffer around tracks. 
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Figure 2. Bland-Altman plots of agreement between activity space areas calculated using Ethica and Sensedoc 
data using four different activity space metrics, a) convex hull, b) 2 Standard Deviation (2SD)-Ellipse, c) 500m 
buffer around fixes, d) 500 buffer along tracks.  

4. Discussion & Conclusion 

The purpose of this paper was to compare location data and activity space metrics obtained from 
a dedicated GPS device (Sensedoc) and a smartphone (using the Ethica Data app) to understand 
differences and similarities between the data collection methods and inform future research. We 
specifically focus our discussion on implications for health research as INTERACT is a health 
research study. Our results showed that for time periods of 6 hours or more, the point level data 
captured by dedicated GPS devices and smartphones are similar. Based on our findings, if the 
health outcome data for a study are available at the day or survey level, there may only be small 
differences in observed associations between exposure calculated using location data and 
outcome whether using dedicated GPS or smartphone location data. However, if the exposure and 
outcome data are available and analyzed frequencies less than the day level, dedicated GPS and 
smartphone devices are likely to provide different substantially different estimates of exposure.  
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Our findings are similar to past research (Adamakis, 2017; Stopher et al., 2018b). Participants 
with dedicated GPS devices had better quality data overall with fewer periods when the device was 
turned off compared to smartphones (Stopher et al., 2018b). It is not clear from this study if the 
difference in data quality are due to differences in the smartphone app operation, or based on true 
differences in participant behaviours. In a study comparing walking and running, total trip 
distance errors were estimated to be 0.30% vs 3.28% for walking, and 0.74% and 4.43% for 
running, when comparing the dedicated GPS and smartphone data respectively (Adamakis, 2017). 
In a study comparing dedicated GPS versus smartphone location data collection for football, 
results showed no statistically significant differences in total distance travelled during a match 
between devices (Tierney & Clarke, 2019). In static field tests, smartphones are shown to be 
slightly more accurate than dedicated GPS devices, however, these tests do not reflect participant 
use cases of differences in device fix time, battery charging, and participant use (Klimaszewski-
Patterson, 2010). As well, in real-world comparisons such ours, it is impossible to have a gold-
standard ground truth, as a result, we are limited to assessing how the results may differ between 
the devices rather than some comparison to a gold-standard.  
 

This paper examined similarities and differences between location data collected using a 
dedicated GPS device with those collected using a smartphone app. At a day, week, or longer time 
scale, the location data collected between the devices is highly correlated. However, at time scales 
of less than a day, the correlation between the data location approaches zero with decreasing time 
scale. Activity spaces calculated at 10-day time scale show that the dedicated GPS produces larger 
activity spaces.  
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