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ABSTRACT 

Real-time and automated traffic flow estimation is an important issue in growing 
cities. A low-cost real-time road traffic estimation method leveraging low-cost off-
the-shelf Internet of Things (IoT) edge devices could be scalable and economical 
to deploy. Recent advancements in computer vision and Deep Learning (DL) 
technologies offer the possibility to enable low-cost IoT cameras to automatically 
monitor and analyze objects’ movements. In this short paper, we proposed a 
pub/sub architecture based on OGC IoT standards that automate and publish 
real-time traffic flow estimations from multiple distributed IoT edge devices. For 
the traffic flow estimation, the number of cars, the average speed during a certain 
time window, and the number of pedestrians are predicted. To evaluate the 
method the OGC Smart City Interoperability Reference Architecture (SCIRA) 
data is used. Based on the results, the precision of counting cars is 93%, the 
precision of counting pedestrians is 87%, the precision of the average speed 
estimation is 78%, and the performance of the architecture is 846 milliseconds 
for every traffic report. 

 

1. Introduction  

Urban development has brought economic benefits to people and governments. It caused urban 
road network development as well as the rising demand for personal vehicles. Traffic control has 
become a critical issue in urban areas because of the growing number of cars and the increasing 
demand for transportation (Papageorgiou et al, 2003).  Traffic estimation is one of the most 
important tasks of a traffic control loop (Papageorgiou et al, 1983). Traffic estimation in urban 
roads refers to the measurement of traffic variables. Traffic variables include average car speed, 
the number of cars, and the density of cars in a road segment. These variables can be estimated 
from Closed Circuit Television (CCTV) using Deep Learning (DL) object detection solutions. 
Object detection should be accomplished frame by frame. To detect objects in each frame, raw 
frames can be sent to the cloud services. This approach has been discouraged because of 
bandwidth and latency challenges (Kar et al., 2017). Regarding recent advances in DL and image 
processing, edge computing techniques have been widely applied as a low-cost and fast solution 
for real-time traffic data processing (Barthélemy et al., 2019). However, assigning all traffic 
processes to the edge computing part is not efficient since, in some cases, a huge amount of 
memory should be dedicated to keeping frames observations for calculations. Therefore, a 
combination of cloud and edge computing architectures is required to process frames in real-time 
while providing efficient memory usage for edge computing devices. This paper proposes a 
pub/sub edge/cloud architecture to estimate traffic in real-time using CCTV cameras. One of the 
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main challenges of this architecture is frame loss due to inefficient memory management on edge. 
As all frames should be detected in real-time, some frames should be skipped to capture and 
process the on-time frames. Losing frames would affect the object tracking as well as observation 
aggregations through the consecutive frames. This paper tries to demonstrate a method to reach 
a better accuracy of traffic estimations by assigning different parts of the processing tasks to the 
architecture nodes.  

2. Methods & Data  

The methodology and data section of this paper is organized into three sub-sections. In the first 
sub-section, the method of estimating traffic is elaborated. The second sub-section explains the 
proposed pub/sub architecture and the details of the different architecture nodes. In the third 
sub-section, the implementation and data are explained. 
 

2.1. Traffic estimation method 

To estimate traffic, three traffic parameters (i.e. the number of cars, the number of pedestrians, 
and the vehicle's speed) are calculated. Figure 1 illustrates how these parameters are calculated. 
 

 
 
 

In this method, frames are captured from camera feeds. Then, cars and persons are detected using 
a Deep Neural Network (DNN) model e.g. You Only Look Once (Yolo) (Redmon and Farhadi, 
2018). Yolo provides higher accuracy for moving object when high-speed object detection and 
tracking is required (Honarparvar et al., 2021). For pedestrians, person objects such as riders and 
drivers should be excluded from the person class list to have only pedestrians objects. Then using 
an aggregation function all pedestrians are counted and aggregated through frames. The same 
approach is applied to count and aggregate cars. To calculate cars’ speed, a tracking function 
should be run on the detected cars. For tracking and identifying cars, Simple Online and Realtime 
Tracking (SORT) is used (Bewley et al., 2016). Then by projecting the car's bottom center to the 
geographic space, a trajectory on the geographic coordinate system is built. Having two parallel 
virtual lines on the street, the start and the end of the trajectory are determined. Consequently, 
the speed is estimated using the distance and the time window. The aggregated speed for all cars 
in a specific time window would be considered as the estimation of cars’ speed. Figure 2 illustrates 
the workflow of estimating a car’s speed. For projecting the points to the geographic coordinates 
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Figure 1- traffic estimation method 
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system, we used the homography (projective) transformation and four ground control points 
(Honarparvar et al., 2021). Due to the trajectory incorrect perturbation, the trajectory length is 
often more than the real value. Therefore, a two-dimensional Kalman Filter is applied to smooth 
the path and reduce the trajectory outliers (Barrios, C., & Motai, 2011).  
 

 

 

2.2. The proposed pub/sub traffic estimation architecture 

The proposed architecture is based on a pub/sub pattern. The pub/sub architecture is a suitable 
pattern for handling distributed sources and tasks and it will increase the scalability (Onica et al., 
2016). In this architecture, camera feeds are processed by the edge computing node. Then, the 
frames are published to a message broker to distribute the messages to a proper subscriber for 
handling the traffic estimations tasks. Due to the limitation of the memory usage of the edge 
processors, the object detection and tracking processes are assigned to the edge computing part. 
The rest of the processes, including coordinates projection, trajectory refinement, data 
aggregation, and speed estimation are handled in the cloud computing part. Figure 3 illustrates 
the details of the architecture. In the architecture, feeds are processed by a trained DNN object 
detection model, then objects are sent into a tracking function to identify each object. After this 
step, a payload including the object's class, identification number, bounding box, the frame’s 
capture time, and the camera ID is published to a message broker right after the tracking step. 
The message broker gets the payload and distributes them to subscribers including two engines 
and one database. The frame data aggregation engine gets the vehicle and pedestrians data and 
formats them into a partition key (i.e., object class) and sort key (i.e., capture time) to add new 
rows to the temporary observations table. The aggregation engine queries the previous 
observations based on the defined schedule, aggregates them, clears the temporary observation 
table, and publishes the aggregated payload back to the message broker. Another subscriber is the 
speed estimation engine which handles vehicle line crossing, coordinates projection, trajectory 
refinement, and speed estimation. This engine updates the temporary observation table and 
removes observations right after finishing the speed estimation. Both engines publish traffic 
parameters to the message broker, and the permanent observation table will be updated by the 
camera id primary key and the capture time sort key. This makes the observations easy to query 
where users can receive traffic values for each camera at a specific time. 
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Figure3- Proposed traffic estimation architecture 

  
2.3. Data and implementations 
To implement the proposed architecture, we used a USB camera to capture the online street feeds. 
As the edge computer, we used Jetson Nano with NVIDIA Maxwell architecture with 128 NVIDIA 
CUDA® cores GPU, Quad-core ARM Cortex-A57 MPCore processor CPU, 4 GB RAM, and two 
frames per second processing speed for object detection. The DNN architecture was Yolov3 and  
Amazon Web Service (AWS) IoT core was used as the message broker. AWS Lambda functions 
were employed to run the processes and AWS DynamoDB was storing the temporary and 
permanent observations. The data used in this paper is provided by the OGC Smart City 

Interoperability Reference Architecture (SCIRA) project working group from Calgary streets camera 
feeds (Saeedi et al., 2020). 
 

3. Results 

Table 1 provides the details of the proposed architecture results. Precision is used as the 
evaluation metric to demonstrate the accuracy of the traffic parameters. The field observations 
are used to measure True positives and False positives. For the performance, the time that the 
entire traffic estimation process took (i.e., from the object detection step to traffic parameter 
storing) is considered. 

Table 1: The proposed architecture results 

Item Value 

Cars number (precision) 93% 

Pedestrian number (precision) 87% 

Car speed estimation (precision) 78% 

Time Performance 846 milliseconds 
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4. Discussion & Conclusion 

 
This paper proposed an architecture to estimate traffic in real-time with high accuracy. The 
architecture is implemented on the Nvidia Jetson Nano edge device, which receives camera feeds 
as input, detects objects, identifies them, then aggregates them to estimate the number of cars 
and pedestrians in a specific street. The proposed methodology estimates cars’ speed by projecting 
the car’s trajectories into geographic space and tracking them until they pass a predefined region 
in the frames. Results demonstrate a higher accuracy for car counting rather than other traffic 
parameters (i.e., pedestrian counting and speed estimation). It is because of the higher accuracy 
of the DNN model as well as the simpler aggregation method rather than other parameters. Speed 
estimation has the least precision since it involves more complicated calculations such as 
trajectory refinement, coordinates projection, and length measurements. The architecture returns 
traffic estimation results in less than a second which means the capability of estimating the traffic 
parameters in near real-time. The proposed method provides higher performance for the real-
time traffic estimation in comparison with the traditional cloud computing or edge computing 
methods. The proposed solution could be used in Traffic estimation and prediction systems 
(TrEPS), real-time traffic monitoring, and traffic control in urban areas. 
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