
Spatial Knowledge and Information Canada 2023 | https://skiconference.ca | Short Paper 14

SKI2023 Volume DOI: 10.17605/OSF.IO/N6DU5

An Initial Study of Real-time Traffic
Estimation with Low-Cost IoT Cameras and

OGC IoT Standards

Sepehr Honarparvar1, Sara Saeedi2,3, Steve Liang1,2

1Department of Geomatics Engineering, University of Calgary,{Sepehr.honarparvar, ssaeedi, Liangs }@ucalgary.ca

2 SensorUp Inc., steve.liang@sensorup.com
3 Open Geospatial Consortium, ssaeedi@ogc.com

ABSTRACT

Real-time and automated traffic flow estimation is an important issue in growing
cities. A low-cost real-time road traffic estimation method leveraging low-cost off-
the-shelf Internet of Things (IoT) edge devices could be scalable and economical
to deploy. Recent advancements in computer vision and Deep Learning (DL)
technologies offer the possibility to enable low-cost IoT cameras to automatically
monitor and analyze objects’ movements. In this short paper, we proposed a
pub/sub architecture based on OGC IoT standards that automate and publish
real-time traffic flow estimations from multiple distributed IoT edge devices. For
the traffic flow estimation, the number of cars, the average speed during a certain
time window, and the number of pedestrians are predicted. To evaluate the
method the OGC Smart City Interoperability Reference Architecture (SCIRA)
data is used. Based on the results, the precision of counting cars is 93%, the
precision of counting pedestrians is 87%, the precision of the average speed
estimation is 78%, and the performance of the architecture is 846 milliseconds
for every traffic report.

1. Introduction

Urban development has brought economic benefits to people and governments. It caused urban
road network development as well as the rising demand for personal vehicles. Traffic control has
become a critical issue in urban areas because of the growing number of cars and the increasing
demand for transportation (Papageorgiou et al, 2003). Traffic estimation is one of the most
important tasks of a traffic control loop (Papageorgiou et al, 1983). Traffic estimation in urban
roads refers to the measurement of traffic variables. Traffic variables include average car speed,
the number of cars, and the density of cars in a road segment. These variables can be estimated
from Closed Circuit Television (CCTV) using Deep Learning (DL) object detection solutions.
Object detection should be accomplished frame by frame. To detect objects in each frame, raw
frames can be sent to the cloud services. This approach has been discouraged because of
bandwidth and latency challenges (Kar et al., 2017). Regarding recent advances in DL and image
processing, edge computing techniques have been widely applied as a low-cost and fast solution
for real-time traffic data processing (Barthélemy et al., 2019). However, assigning all traffic
processes to the edge computing part is not efficient since, in some cases, a huge amount of
memory should be dedicated to keeping frames observations for calculations. Therefore, a
combination of cloud and edge computing architectures is required to process frames in real-time
while providing efficient memory usage for edge computing devices. This paper proposes a
pub/sub edge/cloud architecture to estimate traffic in real-time using CCTV cameras. One of the

https://skiconference.ca/
https://doi.org/10.17605/OSF.IO/N6DU5

1 An Initial Study of Real-time Traffic Estimation

SKI2023 Volume DOI: 10.17605/OSF.IO/N6DU5

main challenges of this architecture is frame loss due to inefficient memory management on edge.
As all frames should be detected in real-time, some frames should be skipped to capture and
process the on-time frames. Losing frames would affect the object tracking as well as observation
aggregations through the consecutive frames. This paper tries to demonstrate a method to reach
a better accuracy of traffic estimations by assigning different parts of the processing tasks to the
architecture nodes.

2. Methods & Data

The methodology and data section of this paper is organized into three sub-sections. In the first
sub-section, the method of estimating traffic is elaborated. The second sub-section explains the
proposed pub/sub architecture and the details of the different architecture nodes. In the third
sub-section, the implementation and data are explained.

2.1. Traffic estimation method

To estimate traffic, three traffic parameters (i.e. the number of cars, the number of pedestrians,
and the vehicle's speed) are calculated. Figure 1 illustrates how these parameters are calculated.

In this method, frames are captured from camera feeds. Then, cars and persons are detected using
a Deep Neural Network (DNN) model e.g. You Only Look Once (Yolo) (Redmon and Farhadi,
2018). Yolo provides higher accuracy for moving object when high-speed object detection and
tracking is required (Honarparvar et al., 2021). For pedestrians, person objects such as riders and
drivers should be excluded from the person class list to have only pedestrians objects. Then using
an aggregation function all pedestrians are counted and aggregated through frames. The same
approach is applied to count and aggregate cars. To calculate cars’ speed, a tracking function
should be run on the detected cars. For tracking and identifying cars, Simple Online and Realtime
Tracking (SORT) is used (Bewley et al., 2016). Then by projecting the car's bottom center to the
geographic space, a trajectory on the geographic coordinate system is built. Having two parallel
virtual lines on the street, the start and the end of the trajectory are determined. Consequently,
the speed is estimated using the distance and the time window. The aggregated speed for all cars
in a specific time window would be considered as the estimation of cars’ speed. Figure 2 illustrates
the workflow of estimating a car’s speed. For projecting the points to the geographic coordinates

Video streaming
Capture frame

Detect cars using DNN
object detection model

Detect pdestrains using
DNN object detection model

Remove persons in the cars
and riders to get pedestrians

Aggregation in

frames and count

pedestrians

Aggregation of

frames and count

cars

Object tracking

and identification

Speed estimation

and averaging

using double

cross line method

Figure 1- traffic estimation method

https://doi.org/10.17605/OSF.IO/N6DU5

An Initial Study of Real-time Traffic Estimation

system, we used the homography (projective) transformation and four ground control points
(Honarparvar et al., 2021). Due to the trajectory incorrect perturbation, the trajectory length is
often more than the real value. Therefore, a two-dimensional Kalman Filter is applied to smooth
the path and reduce the trajectory outliers (Barrios, C., & Motai, 2011).

2.2. The proposed pub/sub traffic estimation architecture

The proposed architecture is based on a pub/sub pattern. The pub/sub architecture is a suitable
pattern for handling distributed sources and tasks and it will increase the scalability (Onica et al.,
2016). In this architecture, camera feeds are processed by the edge computing node. Then, the
frames are published to a message broker to distribute the messages to a proper subscriber for
handling the traffic estimations tasks. Due to the limitation of the memory usage of the edge
processors, the object detection and tracking processes are assigned to the edge computing part.
The rest of the processes, including coordinates projection, trajectory refinement, data
aggregation, and speed estimation are handled in the cloud computing part. Figure 3 illustrates
the details of the architecture. In the architecture, feeds are processed by a trained DNN object
detection model, then objects are sent into a tracking function to identify each object. After this
step, a payload including the object's class, identification number, bounding box, the frame’s
capture time, and the camera ID is published to a message broker right after the tracking step.
The message broker gets the payload and distributes them to subscribers including two engines
and one database. The frame data aggregation engine gets the vehicle and pedestrians data and
formats them into a partition key (i.e., object class) and sort key (i.e., capture time) to add new
rows to the temporary observations table. The aggregation engine queries the previous
observations based on the defined schedule, aggregates them, clears the temporary observation
table, and publishes the aggregated payload back to the message broker. Another subscriber is the
speed estimation engine which handles vehicle line crossing, coordinates projection, trajectory
refinement, and speed estimation. This engine updates the temporary observation table and
removes observations right after finishing the speed estimation. Both engines publish traffic
parameters to the message broker, and the permanent observation table will be updated by the
camera id primary key and the capture time sort key. This makes the observations easy to query
where users can receive traffic values for each camera at a specific time.

Store start time
in memory after
first line cross

Project points to
geographic
coordinates

seystem

Store end time in
memory after

second line cross

Build the
trajectory and

measure length

Speed estimation
using the time
window and

trajectory length

Figure 2- speed estimation workflow

1 An Initial Study of Real-time Traffic Estimation

SKI2023 Volume DOI: 10.17605/OSF.IO/N6DU5

Figure3- Proposed traffic estimation architecture

2.3. Data and implementations
To implement the proposed architecture, we used a USB camera to capture the online street feeds.
As the edge computer, we used Jetson Nano with NVIDIA Maxwell architecture with 128 NVIDIA
CUDA® cores GPU, Quad-core ARM Cortex-A57 MPCore processor CPU, 4 GB RAM, and two
frames per second processing speed for object detection. The DNN architecture was Yolov3 and
Amazon Web Service (AWS) IoT core was used as the message broker. AWS Lambda functions
were employed to run the processes and AWS DynamoDB was storing the temporary and
permanent observations. The data used in this paper is provided by the OGC Smart City

Interoperability Reference Architecture (SCIRA) project working group from Calgary streets camera
feeds (Saeedi et al., 2020).

3. Results

Table 1 provides the details of the proposed architecture results. Precision is used as the
evaluation metric to demonstrate the accuracy of the traffic parameters. The field observations
are used to measure True positives and False positives. For the performance, the time that the
entire traffic estimation process took (i.e., from the object detection step to traffic parameter
storing) is considered.

Table 1: The proposed architecture results

Item Value

Cars number (precision) 93%

Pedestrian number (precision) 87%

Car speed estimation (precision) 78%

Time Performance 846 milliseconds

https://doi.org/10.17605/OSF.IO/N6DU5

An Initial Study of Real-time Traffic Estimation

4. Discussion & Conclusion

This paper proposed an architecture to estimate traffic in real-time with high accuracy. The
architecture is implemented on the Nvidia Jetson Nano edge device, which receives camera feeds
as input, detects objects, identifies them, then aggregates them to estimate the number of cars
and pedestrians in a specific street. The proposed methodology estimates cars’ speed by projecting
the car’s trajectories into geographic space and tracking them until they pass a predefined region
in the frames. Results demonstrate a higher accuracy for car counting rather than other traffic
parameters (i.e., pedestrian counting and speed estimation). It is because of the higher accuracy
of the DNN model as well as the simpler aggregation method rather than other parameters. Speed
estimation has the least precision since it involves more complicated calculations such as
trajectory refinement, coordinates projection, and length measurements. The architecture returns
traffic estimation results in less than a second which means the capability of estimating the traffic
parameters in near real-time. The proposed method provides higher performance for the real-
time traffic estimation in comparison with the traditional cloud computing or edge computing
methods. The proposed solution could be used in Traffic estimation and prediction systems
(TrEPS), real-time traffic monitoring, and traffic control in urban areas.

References

Barrios, C., & Motai, Y. (2011). Improving estimation of vehicle's trajectory using the latest global
positioning system with Kalman filtering. IEEE Transactions on Instrumentation and
Measurement, 60(12), 3747-3755.

Barthélemy, J., Verstaevel, N., Forehead, H., & Perez, P. (2019). Edge-computing video analytics
for real-time traffic monitoring in a smart city. Sensors, 19(9), 2048.

Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, September). Simple online and realtime
tracking. In 2016 IEEE international conference on image processing (ICIP) (pp. 3464-3468).
IEEE.

Honarparvar, S., Saeedi, S., Liang, S., & Squires, J. (2021). Design and Development of an Internet
of Smart Cameras Solution for Complex Event Detection in COVID-19 Risk Behaviour
Recognition. ISPRS International Journal of Geo-Information, 10(2), 81.

Kar, G., Jain, S., Gruteser, M., Bai, F., & Govindan, R. (2017, October). Real-time traffic estimation
at vehicular edge nodes. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing (pp. 1-13).

Onica, E., Felber, P., Mercier, H., & Rivière, E. (2016). Confidentiality-preserving
publish/subscribe: A survey. ACM computing surveys (CSUR), 49(2), 1-43.

Papageorgiou, M. (Ed.). (1983). Applications of automatic control concepts to traffic flow
modeling and control. Berlin, Heidelberg: Springer Berlin Heidelberg.

Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., & Wang, Y. (2003). Review of road
traffic control strategies. Proceedings of the IEEE, 91(12), 2043-2067.

1 An Initial Study of Real-time Traffic Estimation

SKI2023 Volume DOI: 10.17605/OSF.IO/N6DU5

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

S. Saeedi, B. Lieberman, J., Liang, S., Hawkins, C. Chen, I. Correas, I. Starkov, J. MacDonald, M.
Alzona, M. Botts, M. Jahromi, S. Honarparvar, Maddala S (2020). OGC Smart City
Interoperability Reference Architecture (SCIRA) Pilot Engineering Report. OGC

https://doi.org/10.17605/OSF.IO/N6DU5

